Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact ehp508@niehs.nih.gov. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Long-Term Air Pollution and Traffic Noise Exposures and Mild Cognitive Impairment in Older Adults: A Cross-Sectional Analysis of the Heinz Nixdorf Recall Study

Lilian Tzivian, Martha Dlugaj, Angela Winkler, Gudrun Weinmayr, Frauke Hennig, Kateryna B. Fuks, Mohammad Vossoughi, Tamara Schikowski, Christian Weimar, Raimund Erbel, Karl-Heinz Jöckel, Susanne Moebus, and Barbara Hoffmann, on behalf of the Heinz Nixdorf Recall Study Investigative Group

Table of Contents

- **Table S1.** Spearman correlations between air pollution (ESCAPE-LUR) and noise variables (r_s)
- **Table S2.** Association of noise with MCI, OR (95% CI)
- **Table S3.** Association between L_{DEN} (categorical) and overall MCI
- **Figure S1.** Effect modification of association between exposures and overall MCI. Panel A: Associations of $PM_{2.5}$ (per IQR) with overall MCI. Panel B: Associations of L_{DEN} (per 10 dB(A)) with overall MCI. Main model adjusted for age, sex, SES, alcohol consumption, smoking status, self-reported ETS, any regular physical activity and BMI.

Table S1. Spearman correlations* between air pollution (ESCAPE-LUR) and noise variables (r_s)

Variable	$PM_{2.5} (\mu g/m^3)$	PM _{2.5} absorbance (10 ⁻⁵ /m)	PMcoarse (μg/m³)	$PM_{10} (\mu g/m^3)$	$NO_2 (\mu g/m^3)$	$\frac{NOx}{(\mu g/m^3)}$	Traffic load at major roads (veh*m/d)	$L_{DEN}(dB(A))$
$PM_{2.5}$ absorbance $(10^{-5}/m)$	0.89							
PMcoarse (μg/m ³)	0.69	0.74						
$PM_{10} (\mu g/m^3)$	0.88	0.89	0.70					
$NO_2 (\mu g/m^3)$	0.65	0.62	0.46	0.54				
NOx $(\mu g/m^3)$	0.63	0.52	0.42	0.51	0.93			
Traffic load at major roads (veh*m/d)	0.20	0.39	0.20	0.20	0.53	0.34		
$L_{DEN}\left(dB(A)\right)$	0.30	0.48	0.32	0.31	0.37	0.29	0.59	
$L_{NIGHT}\left(dB(A)\right)$	0.30	0.48	0.32	0.32	0.36	0.28	0.57	0.99

^{*}All the correlations are at 0.001 significance level

Table S2. Association of noise with MCI^a, OR (95% CI)

	L _{DEN} continuous (per IQR=14.2 dB(A))	L _{NIGHT} continuous (per IQR=13.6 dB(A))	L _{DEN} (threshold 65 dB(A), per 10 dB(A))	L _{NIGHT} (threshold 50 dB(A), per 10 dB(A))
Overall MCI	1.10 (0.94, 1.28)	1.09 (0.94,1.27)	1.89 (1.10, 3.25)	1.35 (1.00, 1.82)
Amnestic MCI	1.15 (0.94, 1.40)	1.13 (0.93, 1.38)	2.39 (1.28, 4.45)	1.47 (1.02, 2.12)
Non-amnestic MCI	1.06 (0.87, 1.30)	1.06 (0.87, 1.30)	1.34 (0.60, 2.98)	1.22 (0.81, 1.85)

^aAdjusted for age, sex, SES, alcohol consumption, smoking status, self-reported ETS, any regular physical activity, BMI

Table S3. Association between L_{DEN} (categorical) and overall MCI^a

L_{DEN} , $dB(A)$	OR (95% CI)
< 45	Reference
45 - 55	0.98 (0.73,1.32)
55 - 65	1.08 (0.78,1.49)
65 - 75	1.21 (0.84,1.74)
> 75	1.77 (0.61,5.07)

^aAdjusted for age, sex, SES, alcohol consumption, smoking status, self-reported ETS, any regular physical activity, BMI

A.

B.

Figure S1. Effect modification of association between exposures and overall MCI. Panel A: Associations of $PM_{2.5}$ (per IQR) with overall MCI. Panel B: Associations of L_{DEN} (per 10 dB(A)) with overall MCI. Main model adjusted for age, sex, SES, alcohol consumption, smoking status, self-reported ETS, any regular physical activity and BMI.